Department of Physics
DDU Gorakhpur University, Gorakhpur

SYLLABUS FOR 3 Yr B.Sc. Degree
(Operative since 2003 academic Session)

B.Sc. I
Total Marks: 200

(A) Theory Papers
- Paper I: Mechanics 45
- Paper II: Oscillations and Waves 45
- Paper III: Electricity and Magnetism 45

(B) Practical Work 65

B.Sc. II
Total Marks: 200

(A) Theory Papers
- Paper I: Thermal Physics 45
- Paper II: Optics 45
- Paper III: Electronics 45

(B) Practical Work 65

B.Sc. III
Total Marks: 300

(A) Theory Papers
- Paper I: Mathematical Physics and Classical Mechanics 50
- Paper II: Quantum Mechanics 50
- Paper III: Statistical Mechanics and Modern Physics 50
- Paper IV: Spectra of atoms and molecules 50

(B) Practical Work 100
SYLLABUS
B.Sc. Part I
PHYSICS
(Since Session: 2003 - 2004)

Paper I : Mechanics

1. Newtonian Mechanics : Inertial frame of reference, Galilean transformation, Velocity and acceleration in rotating coordinate system, Coriolis force, effect of rotation of earth on g, Foucault Pendulum.
3. Relativistic Dynamics : Relativistic momentum, variation of mass with velocity, relativistic energy, mass energy equivalence, transformations of momentum and energy.
4. Central Forces : Inverse square law, potential and field due to (i) spherical shell and (ii) sphere, gravitational self energy, two body problem and reduced mass, Kepler's laws, motion of a satellite, geostationary satellite.
5. Dynamics of rigid bodies : Equation of motion of a rigid body, moment of inertia, products of moment of inertia, radius of gyration, theorems of parallel and perpendicular axes, moments of inertia of a ring, disc, rectangular beam, hollow and solid cylinders, spherical shell, solid and hollow spheres, moment of inertia of fly wheel, compound pendulum.
7. Properties of Liquids : Stream line motion, Reynold number, Poiseuille's equation, Stoke's law and terminal velocity, Surface tension and surface energy, molecular interpretation of surface tension, Pressure over curved surfaces, capillarity, Jager's method.
Paper II: Oscillations and Waves

1. Free Oscillations: Concept of potential well, small oscillation approximation, differential equation of SHM and its solution, examples of mechanical and electrical systems, Addition of SHM, Lissajous figures with frequency ratio 1:1 and 2:1.

2. Damped Harmonic Oscillation: Mechanical and electrical systems, logarithmic decrement, relaxation time, LCR circuit, Moving coil galvanometer.

3. Forced Oscillations: Forced Oscillation of mechanical and electrical systems, transient and steady state behaviour, sharpness of resonance, quality factor (Q), energy dissipation, Mechanical and electrical impedances, LCR series and parallel resonance.

5. Wave Motion: Wave motion and its parameters, stationary waves, Wave velocity and group velocity.

6. Ultrasonics: Production, properties and uses of ultrasonic waves, Acoustic grating.

7. Fourier Analysis: Fourier theorem, evaluation of Fourier coefficients, analysis of (i) square wave, (ii) sawtooth wave, (iii) half and full wave rectifiers output.

Paper III : Electricity and Magnetism

1. **Electrostatics**: Field due to a charge distribution, Multipole expansion, Electric field due to uniform distribution of line charge, sheet charge and spherical charge, Gauss’ law and its application for finding E for symmetric charge distribution. Electrostatic pressure, electrostatic field energy, force on a point charge in front of an infinite conducting sheet (method of images).

2. **Electric field inside matter**: Dielectrics, parallel plate capacitor with a dielectric, polarization; Concept of electronic, ionic and orientational polarization, polarizability, polarization vector P, displacement vector D, Electric susceptibility, Clausius-Mossotti equation.

3. **Magnetostatics**: Lorentz force, Definition of B, Biot-Savart’s law, Ampere’s law, Magnetic field due to a straight wire, circular coil, Helmholtz’s coils, solenoid, toroid, Lorentz force; Magnetisation, magnetisation current, Magnetic permeability and susceptibility, Electromagnetic induction, Induced electric field, Faraday’s law; integral and differential forms, Series and parallel combination of inductances, mutual induction, coupled circuits and ideal transformer.

4. **Electromagnetic waves**: Displacement current, Maxwell’s equations, E.M. field energy density, EM waves in vacuum, Poynting vector.

5. **A.C. Bridges**: J operator, Anderson, Schering, Robinson and Wein’s bridge.

6. **Network analysis**: T and II networks and their equivalence, Thevenin’s, Norton’s and Maximum Power Transfer Theorems, Low and high pass filters.
Students are required to do any eight experiments from each group.

Group A : General Physics
1. Moment of inertia of fly wheel.
2. Compound pendulum; Acceleration due to gravity and radius of gyration.
3. Modulus of rigidity by Maxwell’s needle.
4. Young’s modulus of rectangular bar by cathetometer or optical lever method.
5. Sextant
7. Surface tension of water by Jaeger’s method.
8. Coefficient of viscosity of water by Poiseuille’s method.
10. Spectrometer
11. Frequency of electrically maintained tuning fork.

Group B : Electricity and Electronics
1. Verification of Child’s law.
2. Characteristics of triode valve and determination of its parameters.
3. Characteristics of Tetrode/ Pentode.
4. Temperature co-efficient for platinum resistance thermometer using Carey Foster’s bridge (M.P. of wax)
5. Thermocouple calibration and melting point of wax.
7. Charge sensitivity of a ballistic galvanometer by capacity discharge method.
9. Reduction factor of Helmholtz galvanometer.
10. Calibration of energy meter using ammeter and voltmeter.
11. Potentiometer: Calibration of voltmeter and ammeter,
12. Determination of low resistance by potentiometer.
Practical Examination

There will be one practical examination. Duration of the examination shall be four hours. Candidates will be required to perform two experiments, one from group A and other from group B. The distribution of marks will be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Regular student</th>
<th>Ex - student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Viva - Voce</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Record</td>
<td>10</td>
<td>00</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>
SYLLABUS
B.Sc. Part II
PHYSICS
(Since Session: 2004 - 2005)

Paper I: Thermal Physics

2. Equation of state: Andrew’s experiment and discussion of results, Specific heat of saturated vapour, Van der Waal’s equation of state, Boyle’s temperature, Critical constants.

3. Thermodynamics and Entropy: Reversible and irreversible processes, Carnot’s theorem, Absolute scale of temperature; second law of thermodynamics; Entropy and its physical significance, Entropy of simple reversible and irreversible processes.

4. Maxwell Thermodynamical Relations: Maxwell thermodynamical relations and their applications to, Clausius-Calpeyron latent heat equations, TdS equations, Joule-Thomson effect, internal energy equation, Specific heat equations, Magneto-caloric effect, Reversible electrolytic cell.

Paper II : Optics

1. Fermat's principle, Principle of extremum path, the aplanatic points of a sphere and other applications.
2. General theory of image formation: Cardinal points of an optical system; general relationships, thick lens and lens combinations, telephoto lenses.
3. Aberration in images: Chromatic aberrations; achromatic combination of lenses in contact and separated lenses, Monochromatic aberration and their reduction, aspherical mirrors and Schmidt corrector plates, oil immersion objectives.
4. Optical instruments: Entrance and exit pupils, need for a multiple lens eyepiece, common type of eyepieces.
5. Interference of light: The principle of superposition; two-slit interference, coherence requirements for the sources, Fresnel biprism localised fringes in thin films, transition from fringes of equal thickness to those of equal inclination. Newton's ring, Michelson interferometer; its uses for determination of wavelength, Wavelength difference and standardisation of meter. Intensity distribution in multiple beam. Interference: Tolansky fringes, Fabry - Perot interferometer and etalon.
6. Fresnel diffraction: Half-period zones, zone plate, circular apertures and obstacles, straight edge, explanation of rectilinear propagation.
7. Fraunhofer diffraction: Diffraction at a slit, circular aperture and a circular disc. Resolution; Rayleigh criterion, Resolving power of human eye, telescope, microscope, grating and prism.
8. Diffraction grating: Diffraction due to two slits, Diffraction at N parallel slits; plane diffraction grating, concave grating.
9. Polarisation: Linearly polarised light, its production and detection, Brewster's law, law of Malus, Double refraction, Nicol prism, double image prism, Huygen's theory of double refraction in uniaxial crystals, circularly and elliptically polarised light; its production and detection, optical rotation, polarimeters.
Paper III : Electronics

1. Basic Semiconductor Physics: Basic features of energy band theory of solids; energy band pictures of semiconductors, electron-hole densities, electrical conductivity of intrinsic and extrinsic semiconductors, minority and majority charge carriers, drift and diffusion currents, concept of continuity equation for minority charge carrier.

2. P-N Junction: Built in potential, width and capacitance of depletion region; Current flow in biased p-n junction, Varactor diode; Zener breakdown mechanism, Zener diode and its characteristics, Photo diode and Solar cell.

3. Transistors: n-p-n and p-n-p transistors, current flow in transistors, potential divider biasing of transistors, characteristics in all three configurations; α, β and hybrid parameters and their relationship, FET and MOSFET, Principle of operation, characteristics and parameters.

4. Amplifiers and Oscillators: Small signal hybrid equivalent circuit of BJT, RC coupled CE amplifiers, frequency and phase response. Amplifier circuit using FET, Oscillator as positive feedback amplifier, Barkhausen criteria of sustained oscillation, LC tuned collector oscillator, Hartley and Colpitts transistor oscillator (derivation of formula not needed).

6. Radio Transmitter and Receiver: AM transmitter (block diagram and function of different blocks); Principle of simple and super heterodyne radio receiver, Qualities of radio receiver (selectivity, sensitivity, fidelity), Standard broadcast radio receiver, Image frequency, AVC and tuning indicator.

PRACTICALS
List of Experiments

Candidates are required to do any eight experiments from each group.

GROUP A: Optics

1. Focal length of thin lenses and their combination by Nodal slide.
2. Wavelength of light by grating using spectrometer.
5. Breadth of single slit by diffraction of light using spectrometer.
6. Resolving power of plane transmission grating.
7. Resolving power of telescope.
8. Specific rotation of cane sugar using polarimeter.
9. Refractive index using Brewster’s law.
10. Characteristics of photocell or photodiode.
11. Wavelength of light by Young’s double slit experiment (using spectrometer)
12. Thickness of mica sheet by biprism.

GROUP B: Electricity and Electronics

1. Determination of high resistance by method of leakage.
4. Study the behaviour of LCR circuit.
5. Measurement of magnetic field of an electromagnet at different current using search coil.
6. H and angle of dip by earth inductor.
7. Characteristics curves of Beam power tube and determination of tube parameters.
8. Characteristics of p-n-p transistor in common-emitter configuraton and determination of current gain β.
12. Verification of truth table of OR, AND and NOT gates.
PRACTICAL EXAMINATION

There will be one practical examination. Duration of examination shall be FOUR hours. Candidates will be required to perform two experiments one from group A and other from group B. The distribution of marks shall be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Regular student</th>
<th>Ex - student</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Experiment 2</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Viva - voce</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Record</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>65</td>
<td>65</td>
</tr>
</tbody>
</table>
SYLLABUS
B.Sc. Part III
PHYSICS
(Since Session: 2005 - 2006)

Paper I: Mathematical Physics and Classical Mechanics

Mathematical Physics
1. Orthogonal transformations, transformation matrix, proper and improper rotations, Euler angles (notation of Goldstein)
2. Curvilinear coordinates: tangent basis vectors, scale factors, spherical, polar and cylindrical coordinate systems, gradient of a scalar, Divergence and curl of a vector, Laplace equation in spherical, polar and cylindrical coordinate systems and its solution.
3. Special Functions: Legendre, Hermite, Laguerre differential equations; their generating functions, recurrence relations, Rodrigue’s formula and orthogonality properties. Associated Legendre polynomial.

Classical Mechanics
2. Two Body Problem: Reduction to one-body problem, centre of mass, Kepler’s problem
3. Canonical Formulation: Hamilton’s equations, canonical transformations, Poisson’s bracket, Angular momentum Poisson’s brackets, Hamilton Principal function, Hamilton-Jacobi equation, Harmonic Oscillator Problem, Hamilton characteristic Function, separation of variables, Central Force problem.
4. Motion of rigid bodies: Angular Momentum, Inertia Tensor, Torque free motion of a rigid body, Symmetrical top, Precession.
Paper II: Quantum Mechanics

1. Matter and Radiation; Photoelectric effect, Compton effect. de Broglie's hypothesis; Davison-Germer experiment, wave packet. Uncertainty principle;, Complementarity principle.
Angular momentum and magnetic moment of an electron due to orbital motion: Bohr magneton, electron spin, Stern-Gerlach experiment.

2. Schrödinger equation: time independent and time dependent formulations. Postulatory approach to wave mechanics, physical interpretation of , conditions to be satisfied by the Schrödinger equation as an operator equation, observables and measurements, eigen values and eigen functions. Classical limit and Correspondence principle. Normalization and Orthogonality of wave function, degeneracy and parity of wave function. Probability current density and its interpretation, expectation value of an observable, Ehrenfest's theorem.

3. Operators: linear operators, product of two operators, commuting and non commuting operator, simultaneous eigen functions, Hermitian operators and their properties.

4. Simple one dimensional problems: Particle in a box, concept of potential well; Wave function and energies for ground and excited states. Step potential, penetration through rectangular barrier, transmission coefficients, quantum mechanical tunneling.

5. One dimensional harmonic oscillator, eigen value and eigen functions of ground and excited states, zero point energy.

Paper III: Statistical Mechanics and Modern Physics

Statistical Mechanics:

1. Statistical basis of thermodynamics, principle of equal a priori probability, probability distribution, average properties. Phase space representation, the mu and gamma space, density of states, ergodic surface, Liouville’s theorem, idea of statistical equilibrium, Microcanonical, Canonical and Grand-Canonical ensambles.

3. Quantum statistics; Cell size, as nature’s constant, indistinguishability and symmetry considerations. Fermi-Dirac and Bose-Einstein Distributions, Planck’s law, Saha’s theory of Thermal Ionisation, Richardson-Dushman Equation.

Modern Physics:

1. Magnetism, Diamagnetism, Paramagnetism due to free ions and conduction electrons; Curie’s law, ferromagnetism, domains, hysteresis loops.

3. Nucleus and Nuclear models: Rutherford-Particle scattering and concept of nucleus, Static properties (size, spin, magnetic moment, parity and quadruple moment) of nucleus. Liquid drop model, Semiempirical mass and binding energy formula and Bohr-Wheeler theory of nuclear fission; Nuclear fusion, Bethe’s theory of nuclear energy; Shell model, Explanation of magic numbers.

5. Elementary particles: Classification, Elementary ideas of strong, electromagnetic, weak and gravitational interactions, Basic idea of Quark model.
Paper IV: Spectra of atoms and molecules

2. Atomic Spectra of one valence electron system: Optical spectra of Alkali atoms, electron spin and fine structure, spin orbit interaction; Zeeman and Paschen-Back effects, Stark effect.

3. Atomic spectra of two valence electrons system: Spectra of helium and alkali earth elements, different types of coupling schemes and interaction energies, Zeeman effect, Paschen-Back effect, Intensity of spectral lines.

5. Fluorescence and Raman spectra.
PRACTICALS

Candidates are required to do any eight experiments from each group listed below.

List of Experiments

GROUP A: Optics
1. To determine the wavelength and separation between D1 and D2 line with the help of Michelson Interferometer.
2. To study the characteristics of photocell and to determine Planck’s constant using photocell.
3. To determine the Young’s modulus by Cornue’s Fringes or Newton’s rings.
4. To determine the velocity of ultrasonic wave by diffraction method.
5. To determine the refractive index of a liquid by total internal reflection method.
6. To determine the wavelength of sodium light by interference due to three/four slits.
7. To determine the wavelength of sodium light by interference due to four slits.
8. To determine the wavelength of a given diode laser by interference method (Young’s double slit).
9. To determine the radius of curvature of a cylindrical and plano convex lens by Interference method.
10. To determine the diameter of a thin wire by interference in a wedge shape air film.
11. To determine the dimensions (open and closed portion) of a double slit from the Fraunhofer diffraction pattern produced using a monochromatic source.
12. To determine the dimensions of a rectangular aperture by its Fraunhofer diffraction pattern.

GROUP B: Electricity and Electronics
1. To determine the specific charge (e/m) of the electron by kenotron/helical method.
2. Verification of Richardson-Dushman equation and evaluation of work function of cathode material.
3. To draw the characteristics and to determine the parameters of a field effect transistor.
4. To study the characteristics of low/high pass filter.
5. To determine the magnetic susceptibility of a liquid by Quincke’s Capillary rise method.
6. To study the characteristics of an audio frequency transistor amplifier.
7. To study the characteristics of R-C network.
8. To study the characteristics of interstage audio transformer.
9. To study the characteristics of a rectifier circuit.
10. To study the characteristics of an unregulated power supply.
11. To study Zener diode voltage regulating characteristics.
12. To study the universality of NOR and NAND gates.
PRACTICAL EXAMINATION

There will be one practical examination. Duration of examination shall be six hours. Candidates will have to perform two experiments: one from Group A and other from Group B. The distribution of marks shall be as below:

<table>
<thead>
<tr>
<th></th>
<th>Student appearing as</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular student</td>
</tr>
<tr>
<td>Experiment</td>
<td>50</td>
</tr>
<tr>
<td>Viva</td>
<td>30</td>
</tr>
<tr>
<td>Record</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>